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A convenient protocol for the parallel solution-phase synthesis of a library of thiocarbamates, ureas,
carbamates, and amides from carbamoylimidazolium salts has been developed. The crystalline carba-
moylimidazolium salts are readily synthesized from secondary amines, CDI and iodomethane, and act
as stable carbamoylation reagents. A common set of reaction conditions and a straightforward non-chro-
matographic liquid–liquid extraction purification protocol were developed for reactions with thiols,
amines, phenols, and carboxylic acids, giving the products with high purities and yields. The resultant
library incorporates diversity arising from the choice of reaction partners and the functional group
linkage generated in the couplings.

� 2008 Published by Elsevier Ltd.
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Figure 1. Libraries incorporating diversity in the linker group derived through (a)
acylation or (b) carbamoylation.
Generating structural diversity is one of the major concerns in
the design of small-molecule libraries.1 Most libraries are synthe-
sized using stepwise approaches in which the synthetic steps em-
ployed are usually, by necessity, common to all library members.
For example, a library constructed through the coupling of a set
of carboxylic acids and amines achieves diversity through the
choice of coupling partners, rather than the amide functionality
linking the two fragments, which is common to every library mem-
ber. Most libraries are synthesized by one or more of such pair-
wise fragment couplings,2,3 using common reaction steps, with
molecular diversity arising through the choice of building blocks
employed rather than the functionality linking the fragments.4 This
limitation can, in principle, be overcome by incorporating func-
tional group diversity as a design element in the library synthesis.5

For example, acylation reactions of amines, alcohols, thiols, and
enolate derivatives would lead to a library composed of amides, es-
ters, thioesters, and 1,3-dicarbonyl compounds (Fig. 1a). The chal-
lenge with such an approach, particularly when using semi- or
fully automated syntheses, is that it is often not possible to estab-
lish a common set of reaction and purification conditions suitable
for each functional group linker, by virtue of the different types of
coupling chemistry employed.6 Our goal was to establish whether
such an approach could be developed in the context of carbamoyl-
ation reactions using carbamoylimidazolium salts 3. We now re-
port the realization of this strategy using a parallel solution-
phase library synthesis of ureas, carbamates, thiocarbamates, and
Elsevier Ltd.

tey).
amides (Fig. 1b), using a common set of reaction and purification
conditions.

Previous studies have established carbamoylimidazolium salts
3 as versatile N,N0-disubstituted carbamoyl cation equivalents7–10

that overcome many of the drawbacks associated with carbamoyl
chlorides,11 which are the most commonly used carbamoylating
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Scheme 1. Synthesis of carbamoylimidazolium salts 3.

Table 1
Parallel synthesis of a library of thioureas, ureas, carbamates, and amides from the reaction
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a 3 (1.25 equiv), 4 (1.0 equiv) and NEt3 (1.0 equiv) were stirred for 16 h at room temp
b Isolated yields following aqueous work-up.
c Purity determined by HPLC analysis (UV254, Hewlett–Packard series 1100MSD electr
d Purity determined by 1H NMR analysis.
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reagents. The salts 3 are in most cases readily synthesized, air-sta-
ble crystalline solids that can be stored for extended periods of
time at room temperature.7 Their application toward library syn-
thesis has been limited to a parallel synthesis of a library of tet-
ra-substituted ureas.7c However, they are known to react with
several classes of nucleophiles, including amines, alcohols, phe-
of carbamoylimidazolium salts 3 with thiols, amines, alcohols, and carboxylic acidsa
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nols, thiols, and carboxylic acids.7–10 To achieve the goal of the cur-
rent study, a single set of reaction and purification conditions were
required for the reaction of 3 with different classes of nucleophiles,
using a parallel solution-phase synthesis approach. We were par-
ticularly interested in establishing a protocol that would not re-
quire the use of any type of chromatographic purification, but
which would give the products in high yield and purity.

Carbamoylimidazolium salts 3a–d were chosen as representa-
tive examples for the purpose of library synthesis, and were syn-
thesized using the previously reported protocol (Scheme 1). Thus,
refluxing the secondary amines 1 with N,N0-carbonyldiimidazole
(CDI) (1.1 equiv) in THF afforded carbamoylimidazoles 2, which
were isolated in excellent yields and purity after only an aqueous
work-up. Reaction of 2 with iodomethane (4.0 equiv) in acetoni-
trile at room temperature for 24 h gave the corresponding carba-
moylimidazolium salts 3a–d, which were isolated by simple
evaporation in vacuo of the volatile reagents and solvents.12 Fur-
ther purification of the salts was not necessary, although salts
3a–d can be recrystallized if required.
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With the imidazolium salts 3a–d in hand, we next set about
developing a common set of reaction conditions suitable for urea,
amide, carbamate, and thiocarbamate formation. A series of
screening studies were run to establish the effect of solvents, base
additives, reaction time, and stoichiometry.7 Dichloromethane was
found to be an optimal solvent, and the use of triethylamine as a
base resulted in complete reaction conversion within 16 h at room
temperature. A small excess of the imidazolium salts 3 was re-
quired to push reactions to completion.

With optimized conditions established, a solution-phase paral-
lel synthesis of a small 48-member demonstration library of com-
pounds was completed using the coupling of 3a–d with 3 different
thiols, 3 amines, 3 phenols, and 3 carboxylic acids (Table 1). The
4 � 12 library comprised four different types of functional group
linkers; thiocarbamates from reaction with thiols, ureas from reac-
tion with amines, carbamates from reaction with phenols, and
amides from reaction with carboxylic acids. The library was syn-
thesized using a 12-tube Radleys carousel on a 0.4 mmol scale,
using a slight excess of the salts 3 (1.25 equiv) with triethylamine
(1.0 equiv).13,14 Since the by-products from the reactions as well as
the unreacted starting materials are water soluble, or could be
made water-soluble by an acid–base reaction, a liquid–liquid
extraction procedure using a sequential acidic (1 N HCl) and basic
wash (1 N NaOH) was used for product purification. The extrac-
tions were carried out using a reservoir (syringe barrel) containing
a hydrophobic membrane (two 20 lm polyethylene frits) that al-
lows only the passage of the denser organic phase (i.e., the dichlo-
romethane layer).15,16 After concentration in vacuo the products 5
could be obtained in excellent yields and purities. Purities were
determined by 1H NMR, and for those compounds possessing a
good chromophore by HPLC using a UV254 detector. In all cases
the purity as determined by NMR was P95%, and by HPLC was
P92%.

In conclusion, a solution-phase parallel synthesis of a small fo-
cused library of thioureas, ureas, carbamates, and amides has been
achieved through the coupling of different classes of nucleophiles
with carbamoylimidazolium salts using a common set of reaction
conditions and a straightforward liquid–liquid extraction purifica-
tion protocol. The strategy allows for diversification of the linking
functional group to be incorporated as a key element in the design
of a single library, using identical coupling conditions. It is antici-
pated that this approach will find utility for the synthesis of
other directed libraries. Further studies on the use of carbamoylim-
idazolium salts and related chemistry will be reported in due
course.
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